

Presentazione				
MFKv0=0. Dato tfs:			Data	col:
2) grafico sft;				
a) con disegno degli intervalli				
questo a fondo giallo e' il testo del compito	b) dall'	<mark>inizio e</mark>	e consecut	ivi.
Leggere bene il testo, po		uta a c	lare ordir	ne allo
svolgimento della soluzi	one.			
MFKv0=0				
dichiara qual e' l'ambier	tazione	e del pr	oblema:	
Moto a Forza Kostante,		1		
Dato tfs:	1 11			
tfs = tempo t in funzione	dello s	spazio j	percorso	S.
1) Calc Δs Δt				
calcolare variazioni cons	ecutive	di spa	izio e ten	npo.
Rem: le variazioni conse	cutive s	sono 1	una men	0
degli stati: 5 dita 4 spazi				

Presentazione

Parliamo delle scale degli assi x e y del grafico, per non sbagliare a posizionare i punti.

(Se penso di saperlo gia' fare con sicurezza, posso saltare).

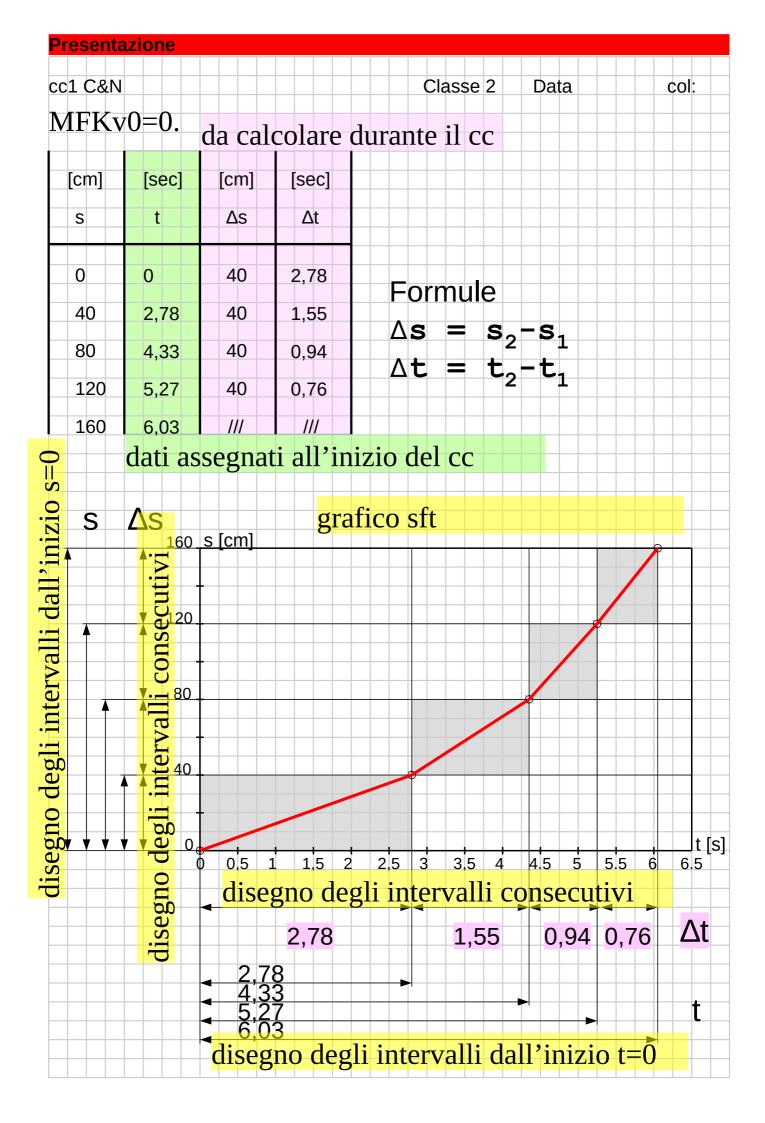
Concentriamoci sulle x, poiche' le y sono facili.

1cm:0,5 e' il rapporto della scala usata, quindi

0,5cm=1q: 0,25 (dividendo per 2 entrambi i termini)

0,1cm=1mm:0,05 (dividendo per 10 entrambi i termini)

quindi la scala dei nr e'


0 0,05 0,10 0,15 0,20 0,25 ... ecc...

Notiamo come regola:

il nr dopo la virgola e' un multiplo di 5.

I valori da tracciare devono essere posizionati sull'asse al posto del nr che occupa il mm piu' vicino.

 $2,78 \rightarrow 2,80 = 2,75+1$ mm $4,33 \rightarrow 4,35 = 4,25+2$ mm $5,27 \rightarrow 5,25 = 5,25$ $6,03 \rightarrow 6,05 = 6,00+1$ mm


```
Questo e' un esempio di cc (compito in classe) svolto correttamente. Faccia B.
Significato di un segmento nel piano sft.
E' un moto: baseB = \Delta t; altezzaH = \Delta s;
inclinazione = H/B = \Delta s/\Delta t = v_m velocita' media.
Conclu: il grafico mostra che
la velocita' aumenta all'aumentare del tempo,
poiche' l'inclinazione aumenta.
Forza motrice, forza resistente, forza risultante
Fmot > Fres ⇒ v↑ (velocita' aumenta)
Fmot < Fres \Rightarrow v \downarrow (velocita' diminuisce)
Fmot = Fres \Rightarrow Fris=0 \Rightarrow v=k (vel costante)
extra
Caduta verticale di un corpo sganciato
1) la velocita' iniziale e' =0
2) il corpo si mette in moto nella direzione della forza
risultante subita: il peso P.
2b) Nasce la Fresistenza dell'aria poiche' v≠0.
3) v↑ poiche' la forza motrice P > Fres dell'aria
```

3b) Fres↑ poiche' v↑;

Frisultante= P-Fres $\downarrow \Rightarrow \Delta v \downarrow$.

Questo processo si ripete fino a ...

5) quando Fres=P \Rightarrow F risultante =0 \Rightarrow v=k

Δy è l'incremento di una variabile y. a) frml def e legenda. b) formule inverse.

a) $\Delta y = y_2 - y_1$ y valore nello stato 2. Es: dopo

 y_1 valore nello stato 1. Es: iniziale

b) $y_2 = y_1 + \Delta y$ $y_1 = y_2 - \Delta y$ Questo e' il modello da completare, da preparare, con cui presentarsi al cc. Faccia A. cc1 C&N Classe 2A Data col: MFKv0=0. Dato tfs: 1) Calc Δ s Δ t. 2) grafico sft; [sec] [cm] [cm] [sec] a) con disegno degli intervalli, t Δs Δt S b) dall'inizio e consecutivi. 0 Formule 40 Δs 80 Δt 120 160 160 s [cm] 120 80 40 t [s] 0 1.5 2.5 0,5 3.5 4 4.5 5.5 6.5