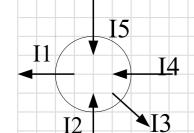
cc5 C&N:

Data:

Clas: 2

Col:

1) Corrente elettrica a) Frml; b) UM: sigle e nomi.


a)
$$I = \frac{Q}{t}$$

b)
$$A = \frac{C}{S}$$

a)
$$I = \frac{Q}{t}$$
 b) $A = \frac{C}{s}$ ampere $= \frac{\text{coulomb}}{\text{secondi}}$

UM: parole in minuscolo obbligatorie

2) Legge di Ohm. | I=kV l'intensita' di corrente I e' dir prop alla tensione V, per i metalli e molti altri materiali, SE si mantiene il materiale a T k (temperatura cost), ALTRIMENTI: per i metalli R aumenta con la T, per gli isolanti diminuisce.

$$\Sigma I_{\rm E} = \Sigma I_{\rm IJ}$$

$$I1=+5-7+8-3$$

$$I1 = -I3 + I2 + I4 + I5$$
 $I1 = +3$

$$I1 = -(-5) + (-7) + (+8) + (-3)$$

4) Calc I, dato V=147mV, $R=18\Omega$

Arrotondare a 2 cifre, non troncare. Voto 0,1

$$I = \frac{V}{R} = \frac{147\text{mV}}{18\Omega} = 8,17 \text{ mA}$$
 (8,166)

5) Calc P, dato: V=1,5volt I=0,12A.

P = VI = 1,5volt * 0,12A = 0,18 watt

- 6) Calc R_E (equivalente) di N=2 resistori di $R=4.7k\Omega$.
- a) R_F parallelo = R/N = 4,7k Ω /2 = 2,35k Ω
- $= R*N = 4.7k\Omega*2 = 9.4k\Omega$ b) R_F serie
- 7) Calc sezione filo per I= 15 A, j= 5 A/mm² Area = $I/j = 15A/(5A/mm^2) = 3mm^2$

Questo e' il modello da com	pletare, da prep	arare, con cui prese Data:	ntarsi al cc. Faccia Clas: 2	A. Col:
1) Corrente elettri	ca a) Frml,	UM: sigle e	nomi.	
a) b)				
2) Legge di Ohn	n. I=			
SE				
ALTRIMENTI:				
3) I1=? I2=-7	I3= -5	I4=+8	I5= - 3	
T V _				
I				
			Arrotondare a 2 c	ifre non
4) Calc I, dato V	= mV ,	$R=18\Omega$.	troncare. Voto 0,	
T =				
_				
5) Calc P, dato:	V= vo	olt I=0,12A		
P=				
6) Calc R _E (equ	ivalente) c	li N= resi	stori di R =	$4,7k\Omega$
a)				
b)				
7) Calc sezione	filo por I-	= A, j= 5	A/mm ²	
	mo per 1-	– A, J– J	/ 1 / 1111111 -	
Area =				

Questo e' un esempio di cc (compito in classe) svolto correttamente. Faccia B. Quadretti 5mm

8)
$$R = \rho \frac{L}{A}$$
 Calc R, con: $\rho = 1,7*10^{-8}\Omega m$
 $L = 1,25*10^{2}m$; $A = 2,7*10^{-9}m^{2}$

R=
$$1,7*10^{-8}\Omega m = \frac{1,25*10^2 m}{2,7*10^{-9}m^2}$$
 sostituire

$$= \frac{1,7*1,25}{2,7} = \frac{10^{-8}*10^{2}}{10^{-9}} = \frac{\Omega m^{*}m}{2}$$
 separare
$$= 0,79*10^{-8+2+9}\Omega = 0,79*10^{3}\Omega \quad (0,787)$$

9) Confront la potenza di 2 azioni A e B, sapendo: hanno uguale durata $t_B = t_A$, e $E_B = 3E_A$. Spiegare.

$$P_{B} \stackrel{\text{(1)}}{=} \frac{E_{B}}{t_{B}} \stackrel{\text{(2)}}{=} \frac{3E_{A}}{t_{A}} \stackrel{\text{(3)}}{=} 3 \frac{E_{A}}{t_{A}} \stackrel{\text{(4)}}{=} 3P_{A}$$

- 1) Formula di definiz della potenza, applicata al caso B
- 2) Sostituire i dati : $E_B = 3E_A$ e $t_B = t_A$
- 3) Passo algebrico: proprieta' delle frazioni
- 4) Formula di definiz della potenza, applicata al caso A
- 10) Conservaz locale carica elettrica. a) Frml; b) parole.
- a) $\Delta Q = QE QU$
- b) L'incremento di carica in un fissato volume e' uguale alla carica entrata carica uscita,

necessariamente passata per la superficie di confine.

11) Idem come sopra, ma espressa "nell'unita' di tempo".

$$\frac{\Delta Q}{\Delta t} = \frac{Q_E - Q_U}{\Delta t} = \frac{Q_E}{\Delta t} - \frac{Q_U}{\Delta t} = I_E - I_U$$

Questo e' il modello da completare, da preparare, con cui presentarsi al cc. Faccia B.

8) _ T.	Calc R, con:	$\rho = 1.7*10^{-8}\Omega m$
$R = \rho \frac{L}{\Delta}$	T = m •	$A = 2.7 \times 10^{-9} \text{m}^2$

9) Confront la potenza di 2 azioni A e B, sapendo: hanno uguale durata $t_B = t_A$, e $E_B = E_A$. Spiegare.

$$P_B \stackrel{(1)}{=}$$

- 1)
- 2)
- 3)
- 4)

10) Conservaz locale carica elettrica. a) Frml; b) parole.

- a)
- b)

11) Idem come sopra, ma espressa "nell'unita' di tempo".

Altre dmd

Que			ı es	sem	pic	di di	CC	(c	om	pitc) in	cl	ass	se)	SV	olt/	0 (ent	te.	Fa)ua				n
cc5	C&N:								Data:							C	las	: 2	Col:												
11)) C	or	re	nte	9 6	ele	ttı	ri(ca	F	'nί	as	e																		
la	CO	rre	en	te	e	let	tr	ic	a	cl	16	•]	ΓF	2	11	V	Sl	T	A	P	E.	R	U	\int	ΙA	\					
SU	JP	EF	R F	Ί(T	E	e'	• -	i1 -	ra	n 1	nc)r1	to	t	ra	. () 2 a 1	ri() 2a.	t 1	a 1	ns	it	at	a .	e	te	m	100)
											r.																			r	
di	tra	ns	31 T	0																											
																												+			
																												+			
																												_			
<u> </u>		_			_							_		٠.				• 6										_			
8)	P=	= \	1	e'	la	a I	00	te	n	za	. 6	919	ett	ri	C	a,	r	116	eri	lta	l a	l C	O	sa							
ass	or.	hii	t a	da	. 1	ın	11	ti	li,	77	_ 21	\mathbf{a}	۲Q		$\overline{}$	$f_{\mathcal{C}}$	۱r	ni	t a	4	a	111	n	σ	nı	e Pi	٦a ⁻	tΩ	re	ı	
ass	OI	UI	ıa	uc	1 L	411	u	LLI	.114		aı	LU	1 C	,	U	1	J I	111	·ta	· U	la	u.	11	g	-11	CI	a	ω	1 C	•	
9)	Pe	ηr	ลด	CCE	חי	de	re		ıır	าล	12	n	nr	าล	ď	in	a	C	าก		ın	a ·	ni	la							
																											_ _1	1,		;]_	
1)	CC)11(zg	,dI	e.		Ρ	U	10	u	Ľ.	llc	1 I	.d.		Ρ	d	ווג	ld	d	u	1	P	ΟI	U	u	eı	ld	. Р	Hd	-
2)	e l	'al	tro	o I	OC	olo) (le	11a	a]	a	m	p	a	11'	al	tı	10	p	ol	O	do	el.	la	p	ili	a	+			
3)													_						_						_						
Sj	Sei	1Z	d (L11	C	1 (.U	11	בצ	3al	ш	C1	.IL.	1 3) 1	ιι	JC	.CI	.111	IIC)							_	_		
																												+			
								-																							
								+																				+			
								4																							
								+																							
													+															+			