![]() |
(x1,y1) (x2,y2) ... (xn,yn) coordinate dei punti della poligonale |
sommando l'area dei singoli trapezi:
1 2 |
n-1 | ||||
A = | ∑ | i | (xi+1 - xi)*(yi + yi+1) | ||
1 |
sviluppando e semplificando, si ottiene
A= - | 1 2 |
| | x1 | x2 | ... | xn | | | +xnyn -x1y1 |
y1 | y2 | ... | yn |
But what does that mean?
The notation is meant to be suggestive of a determinant.
It’s not literally a determinant because the matrix isn’t square. But you evaluate it in a way analogous to 2 by 2 determinants: add the terms going down and to the right, and subtract the terms going up and to the right
(x2-x1)(y1+y2) +x2y1 +x2y2 -x1y1 -x1y2
(x3-x2)(y2+y3) +x3y2 +x3y3 -x2y2 -x2y3
(x4-x3)(y3+y4) +x4y3 +x4y4 -x3y3 -x3y4
(x5-x4)(y4+y5) +x5y4 +x5y5 -x4y4 -x4y5
(x6-x5)(y5+y6) +x6y5 +x6y6 -x5y5 -x5y6
(x1-x6)(y6+y1) +x1y6 +x1y1 -x6y6 -x6y1 caso poligonale chiusa
"Politrapezio" e' un mio neologismo.